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An analysis Is presented of the generation of secondary steady state fluid 
flows between two unldlrectlonally rotating cylinders. 

1. Let a homogeneous fluid be contained In the space between two coaxial 
rotating cylinders. We Introduce a system of cylindrical coordinates (I‘, 8, 
x) with Its r-axis coinciding with the common axis of the two cylinders. We 
shall attempt to find such steady state axlsmtrlc flows, the motion of 
which Is Independent of angle 0 and time. We select the angular velocity 
UI~ and the radius of the Inner cylinder rl as the characteristic dimensions. 
With this, the dimensionless angular velocity and the radius of the Inner 
cylinder will be equal to unity. We denote the dimensionless angular velo- 
city and the radius of the outer cylinder b UJ and 0 , respectively. The 
problem thus stated has the known solution v l] 

1 - &II 
v, = vx=o, vg=u(r)=--ur (1+$), a=-’ P= =‘y-;) (1.1) 

Here, gy,vy,vg are velocity components. 

The flow conforming to solutlor, (1.1) Is called the Couette'flow. The 
existence of steady state axismetric flows, differing from that defined by 
(l.l), was proved experimentally by Taylor [2 and 33. In order to find such 
flows we shall Introduce the stream function $ , and express ug by Formulas 

& & (W* 
1 a 01 r? 

vr = - vx = or ar VW vg=v+rv, R=--y (1.2) 

where R Is the Reynolds number. The urknown functions $ and u are 
defined by the following system of equations: 

a (r2v, r9) 
a (a, r) 

a (9, cp) a* acp 
a (5, r) =-zaz arl, acp --- 

ar ax 

(L.3) 

v=g=*lar=o far r=l, a 
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trivial solution of problem (1.3) ylelds the Couette flow. It is Well 
known that system (1.3) has, for sufficiently small values of R a unique 
solution, namely V=)=O. 

Together with (1.3) we shall consider a system of linearlized equations 
of steady axisymmetric flows 

2. We shall define certain functional domains. 

Let H,(k) be a multloliclty of functions $ defined in the band 
Q=(ii$r<a, - oo<r<oo), having continuous second derivatives in R, 
odd periodic of period &k-l with respect to x and vanishing in the nelgh- 
borhood of the boundary X (for f = 1, a) . 

We shall denote by H(k) the Hilbertian space obtained by supplementing 
Ho(k) in the norm generated by scalar multiplication 

Similarly, let M,(k) be a multiplicity of functions v defined in 0 
having continuous first derivatives in Q , even, periodic of period &k- 1 
with respect to x , and vanishing in the neighborhood of XI . 

We denote by M(k) the Hllbertlan space obtained by supplementing H,(k) 
in the norm generated by scalar multiplication 

(2.2) 

Lemma 2.1. Norms defined b$ (2.1) and (2.2) In spaces y(k), w(k) 
are 'equivalent to the usual norms W, and W,' . 

Lemma 2.2. Norm (2.2) is equivalent to norm 

We shall indicate the path for providing Lemma 2.1. For function from 
X0 we have 

($$-&(r3$-~dxdr=[\r8(~]2dzdr+3{~r(~)2dzdr (2.3) 

For odd functions $(f, 0) = 0 . Therefore 

$ (r, x) = \: ?!!$I.!) dt 

li 
which yields 

Similarly, 

(2.4) 

(2.5) 

Equality (2.3) with (2.4) and (2.5) make It possible to 
evaluate /]Ip]jH by means of , and vice versa. 

The proof of Lemma 2.2 is sin&l&. 
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As the generalized solution of (1.3) we shall consider the pz_lr . :: 
fulfililng the Integral identities 

Lemma 2.3. 
problem (1.3). 

Solution (2.3), (2.4) is till cla.:.:lca! sol\;tlon of 

As the classical solution of problem (1.3) we understand the pair of func- 

tlons #, u which have continuous second (respectively first derivatives 
in the closed space tl , and also fourth (respectively second 1 continuous 
derivatives in R , and satisfying boundary conditions and Equations (1.3). 

Proof of Lemma 2.3 is given In [4 and 5 3. 

3. Each of the right-hand terms of system (2.3),(2.4) represents a linear, 
limited functional with respect to cpEH(fiEM) when QEH, vE M. Con- 
sequently, in accordance with the theorem of the generalized form of the 
functional, we have In the Hilbertlan space such 
SO that 

K,uu, K,v2, K&, T$ UC, 

(9,~)~~ -ha (K,uv,& + (K,r2,q$1 + (&%cp),, (~$6)~ = (%+), + (UV,+)M 

Therefore, system (1.3) Is equivalent to the system of operator equatlonc 

II, = haKluv + K,v= + K,11, (3.1) 

V= T$+ uv (3.2) 

Lemma 3.1. The operators at the right-hand sides of Equations 
(3.1) and (3.2) are fully continuous. 

We shall prove this for the Y, operator. By definition 

We evaluate the first term of (3.3). In accordance with Helder's inequal- 
ity we have 

a d 
ys 1lJ-l =gg r2$ x r%p dx dr 

The second term is evaluated In the same manner. 

Substituting K,$ for cp and inserting Wz2 into W,' , we obtain 

From this follows the boundedness. The continuity is proved in a similar 
manner, while from the complete continuity of the insertion of W," into W,' 
follows the complete continuity of K,. 

by 

We shall consider the homogeneous equation corresponding to (3.2) 

v-uv=o (3.5) 

It has only a trivial solution v = 0 . 
This is proved by scalar multiplication of (3.4) by r2u and Integration 
Dart 

By virtue of Lemma 2.2 we have u = 0 . 
It follows from Fredholm's theorem that (3.2) can be solved for any $EH, 

and consequently (3.2) defines operator 

v = A$ (3.6) 

We shall prove that A is a fully continuous operator, acting from H 
in W . For this we carry out scalar multiplication of (3.5) by I-?u . As 
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previously we make use cf Lemma 2.2, and obtain 

In view of the complete continuity of insertion of W,' in L, [6 and '13 
It follows from here that operator A Is completely contlnJous. 

Lemma 3.2. We have the evaluation as follows !I&$ - T$ijnl <CilQi~~lr. 

By multiplying the two parts by # we have from (3.2) 

assuming u=A*,if, =_A*- TX) and taking Into account (3.7) we obtain the 
proof of this Lemma. 

4, By substituting Into (.3.1) the expression (3.6) for a , we r~~~C~ 
the solution of problem (1.31 to the solution of the Operator equation 

'p = hKl=w + KIGW- + K& = KW Q (4-i) 

Similarly, the linear system (1.4) becomes 
9 = hK,UT$ (4.2) 

The right-hand side of (4.2) is the Freche differential of the right-hand 
side of (4.1). This statement follows Immediately from the linearity of the 
operator K1, Lemma 3.2 and evaluations (3.4) and (3.7). 

We shall non use the bifurcation theory of nonlinear operator equations 
[8] for finding solutions of (1.3) different from those of (1.1). 

The real number )I% Is called the bifurcation point of operator K , if 

i;"":;r Pb 
t, > 0 the o erator 
, and that 'i 

X characteristic number .I is such that 
4.1) has at least one eigenfunction l!tllx < f, + 

It follows from Krasnosel'skii's investigations [8] that the bifurcation 
points of operator X can only be the characteristic numbers of its PrechC 
differential (1.4). 

If X, Is the prime characteristic number of problem (1.4), then it is 
the bifurcation point of operator K , and there is a continuous branch of 
operator X eigenvectors corresponding to this bifurcation point. 

5. In the physical sense, parameter X = 4R2 is real and positive, therc- 
fore the bifurcatlcjn points of system (1.3) can only be the pointo of system 
(1.4) spectrum along the real axis. We shall limit our analysis to a unidi- 
rectional rotation of cylinders (u > 0) . There are two cases, namely 
aalu< 1 , and aaw> 1. 

Multiplying Equations (1.4) by p and 1aur-' respectively, integrating 
with respect to r and x, and taking into consideration boundary eondi- 
tions and periodicity, it is not difficult to arrive at 

It follows from this that for 1 + s/r"> 0 (or @a 5 1) the eigen numbers 
.* In this case there are no bifurcation points in the system 

and It would appear that (1.1) Is the only stationary solution of 
of the periodic function type. !Chls corresponds to the 

results obtained by Synge [9] as regards the steady flow stability (1.1) for 
azul> 1 . 

We shall demonstrate that for u2w < 1 (or 01~ > 0) all eigznnnmbern of 
are bifurcation points of nonlinear equations of steady state motion 

We shall apply to (1.4) the Fourier transformation with finite limits 
[lOI. This is formally equivalent to the substitution into (1.4) of Fourier 
sine and cosine series expansions of $ and v , respectively 
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$ - 2ltit, (r) sin nkt, 2’ - L: v, (r) cos nkz 
For the determination of the Fourier coefficients we have a system of 

equations consisting of pairs as follows: 

AIfhl$,= hnkar%,, - AIvn = knr%j,,, ~,=q~,=~~‘=i) f4. r=-l 

c 
121 = & r3 -$ -+ r3kW 

) 
(n=l,Z,...) (5.1) 

Equation A,.2 - 0 has a positive solution z = Jr (kF)/F where II is 
the Bessel function of a purely imaginary argument [ll]. EQ substituting 
variables P a 

ztft=z(p, v,= t,2kz6, t=t,-1 $%, 
c 

rW = J-1 (t), 
* dr 

i 
to= s 

s 

we obtain System (5.1) in the form 
I 

d2 dzcp 
z; Jz= hz(Jr)-‘a&, -ds= J-‘q, v=cp=~?p’=O ror t=o, 1 (5.2) 

OPeratorS at the left-hand side of (5-2) have been thoroughly studied In 
connection with stability problems of the string and rod rigidly fixed at 
their ends [12]. We shall reduce (5.2) with the aid of Green's functions 
to the integral equation 

1 

(5.3) 

with a positive kernel for aaut < 1 (or QU > 0) 

s(t, a)= WC, (t, s) G, (s, 5) J-’ (a) ds (s (6 6) > 0) 

0 
Green’s functions G,+ and G, are continuous, symmetric and oscillatory 

functions 1121. 

It is easy to prove that kernel S(t, 0) is oscillatory. For this it I.8 
necessary to check whether the following properties are fulfilled (notationS 
are those used In [12] 

The first property easily follows from the Bigne-Cauchy formula for matrix 
construction, after substitution of integral by summation. We shall prove 
the second property. We substitute integral by summation dividing the inter- 
val (0, 1) into m equal parts and we obtain 

/II $ det ( IJ i (si) C, (tip sj) II/l J-l PiI Ga (sjv $1 II) 

m; i> n; g (t) = al’ (t) J-l (t) u (t)) 

The Bign&Cauchy formula states that the determinant of product of matri- 
ces IS equal to the sum of products of multiplication of corresponding mlnorg 
of the multiplied matrices 

x (5.4) 

( 
s. 
tzl 

. . . s. 
x G, 

t 
‘+I* J-I (tl). . .1-l (t,) 

1“’ 1L I 
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For any arbitrary oscillatory function determinants 

G 
t,. . .tn ( 1 s1. . 3, >o for 0 < t1, s1 < . . . < tnr sn < 4 

The remalnlng determinants of the right-hand side of (5.4) are nonnegative. 

We encircle each t, by an 

zeros will then be 

where the exact lower limit Is taken with respect to all St pertaining to 
the aforementioned Intervals. 
Is reached with some of 

(Because of the continuity of G, and G, this 
8, which satisfy condition (5.5)). 

Integral equation (5.3), as an equation having an oscillatory kernel, has 
posltlve and prime eigsl numbers 

0 <h,(nk)< . . . <A, (nk) + 00 
Each e-number 

assumption of their existence leads to the conclusion that such vectors al80 
exist in system (5.lj, which Is not possible. There may exist a certain 
number of such m but their number Is finite, because due to the Complete 
continuity of oper;tor I In (4.2) each elgen number of (1.4) is of finite 
multlpllclty. This elgen number will, however, be a prime number for (1.4) 
and, consequently, a bifurcation point for (1.3) In H(m*k), M(m*k), where 
VII?' is the largest of m . 

We shall note certain properties [12] of the system (1.4) el.geXlfunCtlons. 
For this we Introduce the necessary definitions. An individual null, or a 
continuous null interval )(r) Is called the null srea of function t(r) . 
This null area Is called the nodal area, if function t(r) changes It8 sign 
when passing through it. 

1. The first of the elgenfunctions t. (r), ull1 
not contain zeros within the Interval (1, a). 

(r) of system (5.1) do, 

2. For any e - 1, 2, . . . the elgenfunctlons have exactly 8 - 1 nodal 
areas, and there are no other zeros In the interval (1, a). 

3. For any Integer values of L and m(m h 1) the linear combinations 

17% 1,1 VL 1,L 

have not less than 8 nodal areas and not more than m null area8 in the 
lnterval (1, a). 

4. The nodal points of two adjacent fundamental functions t,,(r) and 
~p.,+~(r) , (u,, and u..+~) alternate. 

*) This apparently takes place when certain relation between the period and 
the distance between the cylinder walls reaches rational values. 
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Properties of the elgenfunctlons v,, follow from the Integral equation 
for u, similarly to (5.3). 

Due to the smallness of the norm of solutions of the nonlinear system 
(1.31, solutions of the latter in the neighborhood of bifurcation points are 
approximated by solutions of the linear system (1.4), namely $ -: $,,,(r)Sln n/l,t, 
v = v,i,(r)cos nkz. The properties enumerated above indicate a complex fluid 
flow pattern, as was observed by Taylor in his experiments [2 and 31. The 
streamlines of the perturbed flow follow toroldal surfaces contained between 
the cylinder walls. The number of such surfaces increases with the increase 
of R . 
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