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An analysis is presented of the generation of secondary steady state fluid
flows between two unidirectionally rotating cylinders.

1. Let a homogeneous fluid be contalned in the space between two coaxial
rotating cylinders. We introduce a system of cylindrical coordinates (r, o,
x) with its x-axis coinciding with the common axis of the two cylinders. We
shall attempt to find such steady state axisymmetric flows, the motion of
which is independent of angle 6 and time. We select the angular velocity
w; and the radius of the inner cylinder r, as the characteristic dilmenslons.
With this, the dimensionless angular velocity and the radius of the inner
cylinder will be equal to unity. We denote the dimensionless angular velo-
clty and the radius of the outer cylinder b w and a , respectively. The
problem thus stated has the known solution [1]

1 —a%n a2 (1 — o)
v,=v,=0, vg=u(r)=—ar (1 -—}——%—) @=_3_71 > =201 (1.1}

Here, Vpy Vyy Vg BTE veloclty components.

The flow conforming to solutior. (1.1) is called the Couette flow. The
existence of steady state axisymmetric flows, differing from that defined by
(1.1), was proved experimentally bty Taylor [2 and 3]. In order to find such
flows we shall introduce the stream function ¢ , and express vy by Formulas

w1r®

1 8 1 0
vrz—ﬁa_z(rz‘p)' vx=ﬁ;—(¥(r“\p), vg=v 41V, R = (1.2)

where A 1s the Reynolds number. The unknown functions ¢ and v are
defined by the following system of equations:

1 3 3 (r8AY, ]
A—;—,—A‘b:hur’% “+ {,2W+2rav%}

b 2 (r*v, rp) ..
Ay = ,.s._ax + N TPOR (1.3)
6 .0 & (P, 9) __ 9 dp 3y Ig
A=4RY, A=t trgn. Gy = Oz ar | or O

v=YPp=0P/r=0 for r=1, a
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trivial solutilon of problem (1.3) yilelds the Couette flow. It ls well
known that system (1.3) has, for sufficlently small values of ® & unique
solution, namely v = ¢ = 0 .,

Together with (1.3) we shall consider a system of linearlized equations
of steady axisymmetric flows

1 . ov Y el —
A}_S-Aw-}»aur”%, Av...r3a._i’, v~1p-—%=0 tor r=1a (1.4

2. We shall define certain functional domailns.

let Ho(k) be a multiplicity of functions ¢ defined in the band
Q=< r<ae, —oo<r<0o0), having continuous second derivatives in Q,
odd periodic of perlod 2nk ! wlth respect to x and vanishing in the neigh-
borhood of the boundary a0 {for r =1, e} .

We shall denote by H#{k)} the Hilbertian space obtalned by supplementing
Ho (k) in the norm generated by scalar multlplication

n/k a
1 =bn 1 a saw a aa‘p
(b, Py = S gwAtpAtpd:cdr SS(F;?_P;-_&E;,?_}_
—n/k1

i A 4 o 0%

L gt T

+2r 9zar oz or 7T Jxt 9a2

Similarly, let My{k) be a multipliclty of functions v defined in Q

having continuous first derivatives in  , even, perlodic of period Pk 3
with respect to x , and vanishing in the neighborhood of a1 .

We denote by M(k) the Hilbertian space obtained by supplementing N, (k)
in the norm generated by scalar multiplication

)dm dr (2.1)

TER an a9 v 99

— | (ps(02 98 , 09 30y, 2.2)
(@ By S S'l(ar ar T oz ax> wdr (2:2)

—n/k1

Lemma 2.1 . Norms defined bg' (2.1) and (2.2) in spaces #H(x), ¥(x)
are ‘equivalent to the usual norms W¥,° and W,' .

Lemma 2.2 . Norm {(2.2) is equivalent to norm
n/k a
arev\? arvy?
2 — fo 2 dx d
121, S Sr[(6r>+(ax>]xr
k1

—/

We shall indicate the path for providing Lemma 2.1. For function from

Ho we have e 1 9 a . PYe 2
SS-}?E?(ra%)dxdr:SSr"(é—;?) dxdr—%—BSSr(%%) dxdr (2.3)

For odd functions ¥(r, G) = 0 . Therefore
x
¢ aP(r,t)
r,x) = XA 0de
b (r, 1) b -
which ylelds

rortassr < 2 v < (@B 0
0

Similarly,

Sg(g—ffdxdrgflgg (%}2@:& {2.5)

Equality (2.3) with 1nequalit?.es (2.4) and (2.5) make it possible to
evaluate ||, by means of I\"P\Wg , and vice versa.

The proof of Lemma 2.2 is similab.



J12 Iu.P. Ivanilov and O.N. Iakovliev

As the generalized solution of (1.3) we shall consider the palr . . v
fulfilling the integral 1dentities

o9 . o (P2, rip) vod

(P, @)y =—ha SS ur Qe dr — S‘\ & AY ) drdr — SS v rigdodr
. \ . 00 T G )
(v, ‘ﬁ)M = 5(\ ,"3\177)7 dxdr -:- gl\ rip m dedr, o, b M (2.6)

Lemma 2.3 . Solution (2.3), (2.4) is thc clas:leal solutlion of
problem (1.3).

As the classical solution of problem (1.3) we understand the pair of func-
tions ¥, v which have continuous second (respectively flrst; derivatives
in the closed space 0 , and also fourth (respectively second) continuous
derivatives in 0 , and satisfying boundary conditions and Equations (1.3).

Proof of Lemma 2.3 1s given in [4 and 5 ]

3. Each of the right-hand terms of system (2.3),(2.4%) represents a lincor
limited functional with respect to o= H(P &= M) when VY& H,v&E M. Con-
sequently, in accordance with the theorem of the generalized form of the
functional, we have 1in the Hilbertlan space such K,uv, Ky2%, Ky, TV, Uz,
so that

W, )y = Ao (Kyuv, @)y + (K192, @)y + (K%, Py, (v, ﬁ)M = (T¥, ﬁ)M + (Uv, Ny

Therefore, system (1.3) is equivalent to the system of operator equations
Y = MK uv + Kp® + K (3.4)
v="Ty+ Uvp (3.2)

Lemma 3.1 . The operators at the right-hand sides of Equatlons
(3.1) and (3.2) are fully continuous.

We shall prove this for the ¥, operator. By definition
! d 7] 1 J a
(K29, ) =—S)—rs—mpa—x r%?rz(p drdr —}-337 Alpa—r riyp a—zr%p dzdr (3.3)

We evaluate the first term of (3.3). 1In accordance with Helder's inequal-
ity we have

o
£ LT

© 1 0 9
N 7 av gz o o rgazar | < 1wl

The second term 1s evaluated 1n the same manner.
Substituting #x,y for ¢ and inserting W.,® into W,' , we obtain

1 Ka$ly < C1¥lg ¥, (3.4)

From this follows the boundedness. The continulty is proved in a similar
manner, while from the complete continuity of the insertion of W,® into W,’
follows the complete continuity of K,.

We shall conslder the homogeneous equation corresponding to (3.2)

v — Uv =20 (3.5)
It has only a trivial solution v = O .
This 1s proved by scalar multiplication of (3.%) by r2v and integration

by part .
(¢ o, 2(r), r'o) . [0r%y arty\?
(v, rﬁv)M—’,—SS r%—m dzdr=(v, r'v)y = \ r[‘\\—a—;—) + <-—a—x‘> ]dxdr:O
By virtue of Lemma 2.2 we have v =0 .

It follows from Fredholm's theorem that (3.2) can be solved for any y& H,
and consequently (3.2) defines operator

v = A (3.6)

We shall prove that 4 1is a fully continuous operator, acting from #
in ¥ . For this we carry out scalar multiplication of (3.5) by r3v . As
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previously we make use cf Lemma 2.2, and obtain
a

iWWM<C$ﬂ¢EEﬁM““<CA¢hﬁwM mﬂwM<CﬁMm,v=A¢{&ﬂ

In view of the complete continuity of insertion of W,? in I, [6 and 7]
1t follows from here that operator 4 1s completely continuous.
Lemma 3.2 . We have the evaluation as follows |d¢ — Ty < ClYiey,.
By multiplying the two parts by & we have from (3.2)
) , 0 (rmp, ©) '
(”‘—TW:(D)Mzgs"“v" a(;b r dfl-'d"<C”7’”M"‘Mu”(DHM

assuming v = Ay, ® = Ap — T and taking into account (3.7) we obtain the
proof of this Lemma.

4, By substituting into (3.1) the expression (3.6) for » , we reduce
the solution of problem (1.3) to the solution of the operator equation

P = AaKyudp + K, (497 + Kb = K (§, A) (4.1)
Similarly, the linear system {1.4) pecomes
Y = K ulyp (4.2)

The right-hand side of (4.2) 1s the Preché differential of the right-hand
side of (#.1). This statement follows Immedlately from the linearity of the
operator X;, Lemma 3.2 and evaluations (3.4) and {3.7).

We shall now use the bifurcation theory of nonlinear operator equations
[8] for finding solutions of (1.3) different from those of {(1.1).

The real number A, 1s called the bifurcation point of operator ¥ , ir
for any ¢, & > O the operator K characteristic number i 1is such that
Ix —1,] <'e , and that (4.1) has at least one elgenfunction |l¢llyz < & .

It follows from Krasnosel'skil's investigations [8] that the bifurcation
points of operator K can only be the characteristic numbers of 1ts Freché
differential {1.4%).

If 2; is the prime characteristic number of problem (1.4), then it is
the bifurcation point of operator X , and there is a continuous branch of
operator K eigenvectors corresponding to this bifurcation point.

5. In the physlcal sense, parameter A = 4B 1s real and positive, there-
fore the bifurcation points of system {1.3)} can only be the points of system
{(1.4) spectrum along the real axis. We shall limit our analysis to a unidi-
rectional rotation of cylinders {u > O) . There are two cases, namely
*w <1, and ¢*w>1 .

Multiplying Equations (1.%) by ¢ and Aqur ! respectively, integrating
with respect to r and x , and taking into consideration boundary condi-
tions and periodicity, it is not difficult to arrive at

g ank-t a ank-t
= f ] Srowtarat 4§ (o B[+ (5 o o]

It follows from this that for 1 + 8/m®> 0 (or a%w > 1) the eigen numbers
are negative.: In this case there are no blfurcation points in the system
(1.3), and it would appear that (1.1) 1s the only stationary solution of
Equations (1.3) of the periodic function type. This correspcnds to the
rgsult§ obtained by Synge [ 9] as regards the steady flow stability {1.1) for
Cw > .

We shall demonstrate that for o?w < 1 {or au > 0) all eigen numbers of
§1.3; are bifurcation points of nonlinear equations of steady state motlon
1.3).

-1

We shall apply to {(1.4) the Fourier transformation with finite limits
{10]. This is formally equivalent tc the substitution into (1.4) of Fourier
gine and cosine serles expansions of § and v , respectively
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Y ~ 2§, (r) sin nkz, v~ v, (r) COS Rkz

For the determination of the Fouriler coefficients we have a system of
equations consisting of pairs as follows:

1
A 75 Mgy, = ankarduv,, — A, =knrdp,, v, =P, =P, =0 for r= 1
d d
(szg;' r3-97‘ = rakﬂn?‘) (n=1,2,...) (5.1)

Equation A;z = O has a positive solution =z = I,(kr)/r where I, is
the Bessel function of a purely imaginary argument [11]. By substituting

variables r a
_ 0 ar < dr
Q’n:z‘l’- vnztﬁgkzﬁs t’—‘fo lg;ﬁz‘zv 828 — J-1 (t)! 30: 5?};‘2‘
we obtain system {5.1) in the form ! !
@ . o
FTm =R e, — =9, v=g=¢'=0 for t=0,1 (5.2

Operators at the left-hand side of {5-2) have been thoroughly studied in
connection with stability problems of the string and rod rigidly fixed at
their ends [12]. We shall reduce (5.2) with the aid of Green's functions
to the integral equation

s =r\s(t.0)p@ds (5.3

0
with a positive kernel for ¢?w < 1 {or qu > 0)

1
S, 0)= S(r})—l auG, (£, 5) Gy (s, 9) J Y eyds  (S(t,6)>0)
4

Green's functions ¢ and Gy are continuous, symmetric and oscillatory
functions [12]. ®

It is easy to prove that kernel S(t, ¢) is oscillatory. For this 1t is
necessary to check whether the following properties are fulfilled (notations
are those used in [12]

bty 0Lt <. <t <A,
ey S(cs1 c)/ (0<cll<.,.<cn<1, ”':1"2"')

1o Oy

oot
(2) S(t _z)>o Ot <. .. <t <, n=1,2...)

1o

The first property easily follows from the Blgné-Cauchy formula for matrix
construction, after substitution of integral by summation. We shall prove
the second property. We substitute integral by summatlion dividing the inter-
val {0, 1) into m equal parts and we obtain

S(tl-.-tn\)_ 1 _1‘dt . Gt I”J'l(t)G (e 23 )
e ty) T beem® {”g(sa‘) ot 5 ) el ly

=1, ...,mj=1,...,mm>n; g =ar(t)J7() u (1)
The Bigné-Cauchy formula states that the determinant of product of matri-

ces 1s equal to the sum of products of multiplication of corresponding minors
of the multiplied matrices

S(tl tﬂ)_ ’ 1 5 oot
Loty ml—i';om“ £ (s"l)' 8 (Sin) G (S"x' .. sin> X (5-4)
G Sipe e Siny .
s(t t >J (). T ()

PR
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For any arbitrary oscillatory function determinants

G(tl...:n)>0 for 0<t1,81<...<tn,8"<1 (5.5)

83. ..
The remaining determinants of the right-hand side of (5.4) are nonnegative.

We encircle each ¢, by an interval of length £ < min(¢,,,— t,). In each
of these there will te = mi — 2 points &, which satis condition (5.5).
The number of determinants in the right-hand side of (5.%) whiin are not
zeros will then be =(mt — 2)*. Thus,

I 1 Loty L
s( > inf (77" lim — (ml — 2" inf G, { JEA )=
tl...tn)/m(g )ml_?;omn(m )" in e\s, . ..5,/ Bls ...

t....t el 8
om S 1 n (31 n)
={"inf (gJ7) mfG@(sl...sn)G@ bty
where the exact lower 1imit is taken with respect to all s, pertaining to
the aforementioned intervals. (Because of the continuity of Gv and Gy this
is reached with some of &, which satisfy condition (5.5)).

Integral equation (5.3), as an equation having an oscillatory kernel, has
positive and prime elgen numbers

0 <A (k) <. .. <Ag (k) — 00

Each elgen number \ = A, (nk) of some of the pairs of Equations (5.1) will
be an eicen number of (1.4) with 1ts eigenfunction ?=1an (r) sin nkz;
v=v,, (r)cos nkz. It will be a prime eigen number of (1.4) in #A(k), ¥(k) and,
therefore a point of bifurcation of (1.3) in H{(x), N(x) , provided there is
no i, (mx) = 1, 2nk) , otherwise it will be a multiple elgen number (*) of sys-
tem (1.4%) in #H(kx), M(x) (without loss of generality, it can be assumed that
m > n). There will be no associated eigenvectors in system (1.4), as the
assumption of their existence leads to the conclusion that such vectors also
exist in system (5.1), which is not possible. There may exlist a certain
number of such m , but their number is finite, because due to the complete
continuity of operator 7 1in (4.2) each elgen number of (1.%) is of finite
multiplicity. This eigen number will, however, be a prime number for (1.3)
and, conseguently, a bifurcation point for (1.3) in #{m*x), N(m*x), where
* is the largest of m .

m*

We shall note certain properties [12] of the system (1.4) elgenfunctions.
For this we introduce the necessary definitions. An individual null, or a
continuous null interval (r) is called the null area of function ¥(7) .
This null area is called the nodal area, if function ¢{r) changes its sign
when passing through it.

1. The first of the eigenfunctions 4,,(r), v,.(r) of system (5.1) do,
not contain zeros within the interval (1, a). )

2. For any ¢ = 1, 2, ... the eigenfunctions have exactly 8 — 1 nodal
areas, and there are no other zeros in the interval (1, ).

3. For any integer values of £ and m(m < £) the linear combinations
m nt mn m

a A o,

2_| csq‘us' >_| bsz'ns (Z s, Z b52>0>

s=| s=I s={ s=={

have not less than & nodal areas and not more than m null areas in the
interval (1, a).

4, The nodal points of two adjacent fundamental functions ¥,, (r) and
Vaesr () 5 (v,, and v,,,,) alternate.

*) This apparently takes place when certain relation between the period and
the distance between the cylinder walls reaches rational values.
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Properties of the eigenfunctions v,, follow from the integral equation
for v, similarly to (5.3).

Due to the smallness of the norm of solutions of the nonlinear system
(1.3), solutions of the latter in the neighborhood of bifurcation points are
approximated by solutions of the linear system {(1.4), namely ¥ -+, (7) sin nke,
v = mm(ﬂcosnkx. The properties enumerated above indlcate a complex fluid
flow pattern, as was obgerved by Taylor in his experiments [2 and 3]. The
streamlines of the perturbed flow follow toroidal surfaces contalned between
t?e cylinder walls. The number of such surfaces increases with the increase
o R .
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